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ABSTRACT

The En4DVar method is designed to combine the flow-dependent statistical covariance information of EnKF

into the traditional 4DVar method. However, the En4DVar method is still hampered by its strong dependence on

the adjoint model of the underlying forecast model and by its complexity, maintenance requirements, and the high

cost of computer implementation and simulation. The primary goal of this paper is to propose an alternative

approach to overcome the main difficulty of the En4DVar method caused by the use of adjoint models. The

proposed approach, the nonlinear least squares En4DVar (NLS-En4DVar) method, begins with rewriting the

standard En4DVar formulation into a nonlinear least squares problem, which is followed by solving the resulting

NLS problem by aGauss–Newton iterativemethod. To reduce the computational and implementation complexity

of the proposedNLS-En4DVarmethod, a few variants of the newmethod are proposed; thesemodificationsmake

the model cheaper and easier to use than the full NLS-En4DVar method at the expense of reduced accuracy.

Furthermore, an improved iterative method based on the comprehensive analysis on the above NLSi-En4DVar

family of methods is also proposed. These proposed NLSi-En4DVar methods provide more flexible choices of the

computational capabilities for the broader and more realistic data assimilation problems arising from various ap-

plications. The pros and cons of the proposedNLSi-En4DVar family ofmethods are further examined in the paper

and their relationships and performance are also evaluated by several sets of numerical experiments based on the

Lorenz-96 model and the Advanced Research WRF (ARW) Model, respectively.

1. Introduction

Data assimilation for numerical weather prediction

(NWP) has experienced explosive growth and develop-

ment after ensemble Kalman filter (EnKF; Evensen 1994;

Houtekamer et al. 2014) and four-dimensional variational

data assimilation (4DVar; Rabier et al. 2000) techniques

were successively introduced as two major competing

methods for initializing NWP. It is their competition

(Kalnay et al. 2007; Lorenc 2003) and their interplay

(Gustafsson 2007) that have fueled the rapid growth and

development in this area of research over the past 20 years.

On one hand, successful applications of 4DVar at several

major operational NWP centers (e.g., ECMWF, and those

of France, the United Kingdom, Japan, and China) dem-

onstrate that its development has reached an advanced and

mature stage. A consensus view point in the NWP com-

munity is that 4DVar has advantages in producing highly

accurate predictions and having the ability to assimilate
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asynchronous observations simultaneously. On the other

hand, 4DVar has been hampered by its strong de-

pendence on the adjoint model of the forecast model

and its complexity, maintenance requirements during

operations, and the high costs associated with pro-

gramming and computer simulations. Moreover, the

adjoint models are often very difficult to obtain when

the model physics involves substantial ‘‘on–off’’ pro-

cesses (Xu 1996; Zou et al. 1997; Steward et al. 2012), as

these limitations call for improvements and for de-

veloping more efficient methods such as EnKF or some

nonsmooth optimization approaches (e.g., Karmitsa

2016). In contrast, EnKF has become increasingly

competitive with 4DVar due to its capability of pro-

viding flow-dependent error estimates from the statistics

of the ensemble samples. However, the performance of

EnKF could be compromised by sampling errors be-

cause of limited sample sizes, which has indeed been a

difficult issue throughout the development of EnKF.

Recently much effort has been devoted to developing

hybrid methods based on 4DVar and EnKF, which

could ideally inherit the advantages of both methods

but avoid their deficiencies (Gustafsson 2007; Kalnay

et al. 2007; Bowler et al. 2017a,b; Lorenc 2017; Lorenc

et al. 2017; Bannister 2017; Amezcua et al. 2017;

Goodliff et al. 2017). For example, on the EnKF side,

Hunt et al. (2004) extended EnKF to four dimensions

in order to allow the use of asynchronous observations,

which thus introduced the 4DEnKFmethod. The 4DEnKF

approach can assimilate observations at selected time points

just like 4DVar does but without iteration. Evensen and

Van Leeuwen (2000) proposed the ensemble Kalman

smoother to achieve the same purpose. On the 4DVar side,

the ‘‘hybrid’’ (e.g., Clayton et al. 2013), the ‘‘En4DVar’’

(e.g., Zhang et al. 2009), and the ‘‘4DEnVar’’ assimilation

methods (Qiu et al. 2007; Liu et al. 2008; Tian et al. 2008;

Wang et al. 2010; Tian et al. 2011; Tian and Xie 2012; Tian

and Feng 2015) were successively proposed to incorporate

the statistical flow-dependent strengthofEnKF into 4DVar.

It was noted by Lorenc (2013) that the hybrid 4DVar uses a

combination of climatological and ensemble covariances

and the En4DVar utilizes the ensemble background co-

variance provided by the parallel EnKF implementation.

It should be noted that the adjoint model is often used to

carry out the minimization procedure in both the hybrid

4DVar and the En4DVar, but the 4DEnVar approach

utilizes the simulated observation perturbations (OPs) to

approximate the linearized tangent operator and hence

avoids using the adjoint models. Indeed, some variations

of the 4DEnVar without iteration are similar to 4DEnKF

(Tian et al. 2011; Hunt et al. 2004). This phenome-

non further explains the necessity of their (4DVar and

EnKF) integration. In comparison, the competitiveness

of En4DVar is in its more accurate description of the tan-

gent linear model (when the linearity validity of the linear

model is satisfied) while the advantage of 4DEnVar is its

ease in programming.A natural question is whetherwe can

achieve a balance between 4DVar and EnKF in terms of

performance and accuracy. Such a balance, it seems, only

can be achieved through a comprehensive analysis of all the

factors involved, including assimilation accuracy, pro-

gramming difficulty, and computational complexity.

The primary objective of this paper is to address the

above question. We begin by reviewing the standard

En4DVar formulation and then present its reformulation

as a nonlinear least squares (NLS) problem. A Gauss–

Newton iterative algorithm is then proposed to solve the

reformulated NLS problem. Since the exact implementation

of the Gauss–Newton algorithm is computationally ex-

pensive, we propose various levels of simplifications of the

full Gauss–Newton algorithm with decreasing computa-

tional complexity. Among these simplified algorithms, we

recovered the NLS-En4DVar algorithm proposed by Tian

and Feng (2015). If only one iteration is retained in the

NLS-En4DVar algorithm, it is further reduced into POD-

4DVar (Tian et al. 2008; Tian et al. 2011), which is a typical

4DEnVar method without iteration.

The remainder of this paper is organized as follows. In

section 2, we first describe the alluded to NLS re-

formulation of the standard En4DVar and the Gauss–

Newton algorithm. We then present several simplified

algorithms of the full Gauss–Newton algorithm and

examine their pros and cons. In section 3, we carry out

several numerical experiments using the Lorenz-96

model to evaluate the performance of all the proposed

algorithms with a focus on their assimilation accuracy

and computational complexity. We then perform a

group of evaluation experiments using the Advanced

Research WRF (ARW) Model to further exploit the

potential applicability of three members of the NLSi-

En4DVar family of methods to real atmosphere and/or

ocean models. Finally, we finish the paper with a sum-

mary and a few concluding remarks in section 4.

2. Methodology

The incremental form of 4DVar is defined as seeking

the analysis increment for the initial conditions (ICs), x0a
(at the initial time t0), such that x0a minimizes the fol-

lowing cost function:
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It is easy to check that Eq. (1a) can be rewritten as

J(x0)5
1

2
(x0)TB21(x0)1

1

2
�
S

k50

[L0
k(x

0)2y0obs,k]
T

3 R21
k [L0

k(x
0)2y0obs,k], (1b)

where x0 2 R
mx (mx is the dimension of the state vec-

tor) is the perturbation of the background field xb at

t0 and

L0
k(x

0)5L
k
(x

b
1 x0)2L

k
(x

b
) , (2)

y0obs,k 5 y
obs,k

2L
k
(x

b
) , (3)

L
k
5H

k
M

t0/tk
. (4)

Here, the superscript T stands for the matrix trans-

pose, yobs,k 2 R
my,k is the observation at time incidence

tk, my,k is the dimension of the observational vector

yobs,k, b is the background value, S1 1 is the total

number of observation time points in the assimilation

window, Hk is the observation operator, and B and Rk

are the background and observation error covariance

matrices, respectively. All the symbols used in this

paper follow the general conventions and are de-

scribed in Table 1.

In En4DVar, the background error covariance matrix

B is approximated by the ensemble covariancematrixBe

as

B’B
e
5

(P
x
)(P

x
)T

N2 1
, (5)

where Px 5 (x01, x
0
2, . . . , x

0
N) is the prepared initial per-

turbations (IPs) and N is the ensemble size.

To filter out the noise resulting from undersampling

(Houtekamer and Mitchell 2001), a decomposed

correlation function operator (Liu et al. 2009; Buehner

2005) is often applied to modify the IP matrix Px as

follows:

P
x,r

5 (P
x
, e. r

x
)5 (r

x
+P

x,1
* , . . . ,r

x
+P

x,N
* ) (6a)

and thus

B’B
e,r

5B
e
+r5

1

N2 1
r+(P

x
PT
x )

5
1

N2 1
P
x,r
(PT

x,r), (6b)

where Px,r 2 R
mx3(r3N) [r is the number of eigenvectors

chosen; see Liu et al. (2009)] is the localized IP matrix,

Px,j
* ( j5 1, . . . , N) is an mx 3 r matrix whose every col-

umn is the jth column of Px, rx 2 R
mx3r, and r5rxr

T
x .

Here, r 2 R
mx3mx is the spatial correlation matrix (Tian

et al. 2016; Zhang and Tian 2017, manuscript submitted

to J. Geophys. Res. Atmos., hereafter ZT) and B+C
stands for the Schür product of matrices B and C, which

is a matrix whose (i, j) entry is given by bi,j 3 ci,j. In real

data assimilation problems, the direct decomposition of

r (5rxr
T
x ) may not be feasible because of its huge size.

ZT proposed an efficient local correlation matrix de-

composition approach to compute the decomposition

r5 rxr
T
x . For ease of the subsequent presentation, we

define the operator ,e. in Eq. (6a).

To avoid the direct computation of the inverse of

matrixBe,r, we further express the analysis solution x
0
a by

the linear combinations of Px,r as

x0a 5P
x,r
b: (7)

Substituting Eqs. (6) and (7) into Eq. (1) and ex-

pressing the cost function in terms of the new control

variable b yields

J(b)5
1

2
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k50
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Obviously, because of the nonlinearity, the solution to

Eq. (8) can be computed iteratively by performing

evaluations of the cost function Eq. (8) and its gradient,

=J(b)5 (N2 1)b 1 �
S

k50

PT
x,r(M

0
k)

T(H0
k)

T

3 R21
k [L0

k(Px,r
b)2y0obs,k], (9)

using a suitable descent algorithm [e.g., the limited-

memory quasi-Newton method (L-BFGS) method; Liu

and Nocedal (1989)]. Here, M0
k and H0

k are the tangent

linear (TL) models ofMt0/tk andHk, respectively. Their

respective adjoint models are (M0
k)

T and (H0
k)

T. It is not

hard to see that the adjoint models (M0
k)

T and (H0
k)

T are

indispensable to the En4DVar problem given by Eqs.

(8) and (9).
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a. NLS0-En4DVar: Gauss–Newton solution of
En4DVar

To circumvent the use of the adjoint models, we fol-

low Tian and Feng (2015) by first rewriting Eq. (8) as a

nonlinear least squares problem (Dennis and Schnabel

1996), which minimizes the following quadratic cost

function:

J(b)5
1

2
Q(b)TQ(b) , (10)

where

Q(b)5

8>>>>>><
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ffiffiffiffiffiffiffiffiffiffiffiffi
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..

.
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1,S [L0
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b)2y0obs,S]

9>>>>>>=
>>>>>>;

(11)

and (R1/2
1,k)(R

1/2
1,k)

T 5Rk. Consequently, the first-derivative

matrix (or Jacobian matrix) JacQ(b) of Q(b) can be com-

puted as follows:

TABLE 1. Summary of key notation used in this article, wheremx is the size of the state space,my,k is the number of observations at tk,

S1 1 is the number of time steps, r is the number of eigenvectors chosen in the EOF decomposition of correlation matrix r, and N is the

number of ensemble members.

Notation Description Size
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0, x0a, x
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where I denotes the (N3 r)3 (N3 r) identity matrix. There-

fore, the Gauss–Newton iteration for the nonlinear least squares

problemEq. (10) is defined by (Dennis and Schnabel 1996)

bi 5bi21 2 f[J
ac
Q(bi21)]TJ

ac
Q(bi21)g21

3 [J
ac
Q(bi21)]TQ(bi21) (13)

for i5 1, . . . , Imax, where Imax is the maximum iteration

number.

Substituting Eqs. (11) and (12) into Eq. (13), we

obtain
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where Dbi 5bi 2bi21. Consequently, we arrive at

bi 5bi21 1Dbi and then xi,
0

a 5Px,rb
i by solving the lin-

ear system Eq. (14b) using the conjugate gradient (CG)

method or a preconditioned CG method.

We name the iterative algorithm in Eq. (14) NLS0-En4D-

Var since it is the solution to the nonlinear least squares

problem in Eq. (10). Compared with the original En4DVar

iterative algorithm in Eqs. (8) and (9), the formulation of

NLS0-En4DVar is derived from Eq. (8) through Eqs.

(10)–(14) without making any additional assumptions. So the

subscript 0 is used to indicate that the formulation Eq. (14) is

derived fromEqs. (8) and (9)without any simplification; thus,

Eq. (14) is mathematically equivalent to Eqs. (8) and (9),

namely, NLS0-En4DVar is equivalent to the original

En4DVar. However, the adjoint models are nicely avoided

in NLS0-En4DVar Eq. (14) since (H0
kM

0,i21
k Px,r)

T can be

obtained simply by transposing (H0
kM

0,i21
k Px,r), which can be

formed explicitly by integrating the tangent linear models.

Furthermore, Eq. (14) is easier to implement and more por-

table because it does not rely on any existing optimization

package (Tian and Feng 2017). One may argue that the

computational cost may be significantly increased because

the ensemble size is expanded toN3 r fromN after applying

the localization [i.e. Eq. (6)]. However, the situation may not

beasbadasfirst imagined inviewof the rapiddevelopmentof

high-performance computers. The tangent model M,i21
k has

two basic input variables: xi21 and x
0. In the ith iteration step,

xi21 is assigned the value xi21
a , which is used to initialize

the forecast model Mt0/tk to prepare the parameters for

the tangentmodelM0,i21
k . After that, all the parameters of the

tangentmodel arefixedduring the ith iterative step (Zouet al.

1997). Thatmeans the computation ofM0,i21
k Px only needs to

call the forecast model Mt0/tk once, which is followed by

N3 r series of linear operations in M0,i21
k . In addition, the

implementation ofN3 r series of linear operations inM0,i21
k

can be carried out in parallel. The situation is further im-

proved in the following simplified version ofNLS0-En4DVar.

b. NLS1-En4DVar: Simplification by acting the
localization in observation space

In view of the possible high computational cost of eval-
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kM

0,i21
k Px,r, we further approximate (H0

kM
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k Px,r)

by (H0
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0,i21
k Px)r in NLS0-En4DVar, which then leads to

NLS1-En4DVar, which is defined as
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(ZT). The following approximation

(H0
kM

0,i21
k P

x,r
)’ (H0

kM
0,i21
k P

x
)
r
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is adopted to alleviate the computational cost because only

N series of linear operations in M0,i21
k are required for

computing H0
kM

0,i21
k Px, which is considerably less than the

original N3 r series of linear operations in M0,i21
k for

computing H0
kM

0,i21
k Px,r in NLS0-En4DVar.

It should be noted that solving (15) by using the CG

method is still extremely challenging since the size

(N3 r) ofbi is extremely large (;10629) as a result of the

localization implementation [Eqs. (6) and (16)]. To avoid

the expensive computational cost resulting from the CG

iterations, we first go back to the unlocalized version of

Eq. (15):
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and then transform it into following format:
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Equation (1500) is derived by substituting bi21 ’
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(N21)bi21 on the right side of Eq. (150), where the deri-

vationofbi21’ [(Pi21
y )T(Pi21

y )]21(Pi21
y )TH0M0,i21(Pxb

i21) is

basedontheassumptionH0M0,i21(Pxb
i21)’Pi21

y bi21,where

H0M0,i21 5

0
BBBB@

H0
0M

0,i21
0

H0
1M

0,i21
1

..

.

H0
SM

0,i21
S

1
CCCCA and

Pi21
y 5

0
BBBBB@

Pi21
y,0

Pi21
y,1

..

.

Pi21
y,S

1
CCCCCA.

We further mark

(P*,i21
y,k )T 52(N2 1)

"
�
S

k50

(Pi21
y,k )

TR21
k (Pi21

y,k )1 (N2 1)I

#21

3

"
�
S

k50

(Pi21
y,k )

T(Pi21
y,k )

#21
(Pi21

y,k )
T,

(16a)

and

(P#,i21
y,k )T 52

"
�
S

k50

(Pi21
y,k )

TR21
k (Pi21

y,k )1 (N2 1)I

#21
(Pi21

y,k )
T.

(16b)

Therefore, Eq. (1500) is further transformed as follows:

Dbi 5 �
S

k50

(P#,i21
y,k )TR21

k [L0
k(Px

bi21)2y0obs,k]

1 �
S

k50

(P*,i21
y,k )TH0

kM
0,i21
k (P

x
bi21). (15000)

Subsequently, we adapt the alternative localization

scheme proposed by Tian and Feng (2015) to transform

Eq. (15000) into the following format,

Dbi 5 �
S

k50

(P#,i21
y,k , e. r

y
)TR21

k [L0
k(Px,r

bi21)2y0obs,k]

1 �
S

k50

(P*,i21
y,k , e. r

y
)TH0

kM
0,i21
k (P

x,r
bi21), (17)

by localizing the matrices P#,i21
y,k , P*,i21

y,k
, and

Px through (P*,i21

y,k
, e. ry), (P#,i21

y,k , e. ry), and

Px,r 5 (Px , e. rx). Apparently, Dbi is now computed

explicitly by Eq. (17) and the CG iterations are thus

avoided. By direct calculation, we obtain

Dx0ia 5P
x,r
Dbi
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5P
x,r �

S

k50

[(P*,i21
y,k , e. r

y
)TH0

kM
0,i21
k (P

x,r
bi21)]

1P
x,r �

S

k50

(P#,i21
y,k , e. r

y
)TR21

k [y0obs,k 2L0
k(Px,r

bi21)]

5 �
S

k50

f[r
x
rT
y+Px

(P*,i21
y,k )T]H0

kM
0,i21
k (P

x,r
bi21)g

1 �
S

k50

[r
x
rT
y+Px

(P#,i21
y,k )T]R21

k [y0obs,k 2L0
k(Px,r

bi21)]

5 �
S

k50

f[r
xy
+P

x
(P*,i21

y,k )T]H0
kM

0,i21
k (P

x,r
bi21)g

1 �
S

k50

[r
xy
+P

x
(P#,i21

y,k )T]R21
k [y0obs,k 2L0

k(Px,r
bi21)],

(18)

which shows that the localization scheme adopted in

Eq.(17) is completely equivalent to (but with higher

computational efficiency than) that proposed by Tian

and Feng (2015). In fact, the last line in Eq. (18) has

exactly the same localization form as Eq. (30b) in Tian

and Feng (2015). Here, rxy (5rxr
T
y ) is the correlation

matrix between model states and observational

variables (ZT).

c. NLS2-En4DVar: Further simplification by
abandoning the use of the tangent models

In NLS1-En4DVar, the tangent modelsM0,i21
k andH0

k

are still retained and their implementation still could

be a bit difficult despite being much easier compared

to the implementation of their adjoint models. To

further reduce the implementation complexity by

abandoning the use of the tangent models, we in-

troduce NLS2-En4DVar, which is formulated as

follows:

Dbi 5 �
S

k50

[(P*,ay,k , e.r
y
)TL0

k(Px,r
bi21)]

1 �
S

k50

(P#,a
y,k , e. r

y
)TR21

k [y0obs,k 2L0
k(Px,r

bi21)],

(19a)

where

(P*,ay,k )
T 52(N2 1)

"
�
S

k50

(Pa
y,k)

TR21
k (Pa

y,k)1 (N2 1)I

#21

3

"
�
S

k50

(Pa
y,k)

T(Pa
y,k)

#21
(Pa

y,k)
T, (19b)

(P#,a
y,k)

T 5

"
�
S

k50

(Pa
y,k)

TR21
k (Pa

y,k)1 (N2 1)I

#21
(Pa

y,k)
T,

(19c)

Pa
y,k 5 (y0ak,1, . . . , y

0a
k,N), (19d)

and

y0ak,j 5L
k
(xi21

a 1 x0j)2L
k
(xi21

a ), j5 1, . . . ,N . (19e)

In NLS2-En4DVar, the forecast model Mt0/tk will be

repeatedly integratedN times at the ith iteration to form

Pa
y,k by means of Pa

y,k 5Lk(x
i21
a 1Px)2Lk(x

i21
a ), which

certainly leads to expensive computational costs.

d. NLS3-En4DVar: Further simplification by fixing
the OPs

To reduce the computational costs, we fix the simu-

lated OPs, Pa
y,k 5Py,k, during the iteration process and

thus form the following NLS3-En4DVar method:

Dbi 5 �
S

k50

[(P
y,k
* , e. r

y
)TL0

k(Px,r
bi21)]

1 �
S

k50

(P#
y,k , e. r

y
)TR21

k [y0obs,k 2L0
k(Px,r

bi21)],

(20a)

where

(P
y,k
* )T 52(N2 1)

"
�
S

k50

(P
y,k
)TR21

k (P
y,k
)1 (N2 1)I

#21

3

"
�
S

k50

(P
y,k
)T(P

y,k
)

#21
(P

y,k
)T, (20b)

(P#
y,k)

T 5

"
�
S

k50

(P
y,k
)TR21

k (P
y,k
)1 (N2 1)I

#21
(P

y,k
)T,

(20c)

P
y,k

5 (y0k,1, . . . , y
0
k,N), (20d)

and

y0k,j 5L
k
(x

b
1 x0j)2L

k
(x

b
) . (20e)

It is interesting to note that NLS3-En4DVar is just the

NLS-4DVar method (but with a modified localization

scheme) proposed by Tian and Feng (2015).

e. NLS4-En4DVar: One iteration of NLS3-En4DVar

Performing only one iteration of NLS3-En4DVar Eq.

(20) with b0 5 0, we obtain the following NLS4-En4D-

Var method:
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b1 5 �
S

k50

(P#
y,k , e. r

y
)TR21

k y0obs,k, (21)

which is just the POD-4DVar method proposed by Tian

et al. (2011). Moreover, restricting Eq. (21) to the 3D

case, we obtain

b1 5 (P#
y , e. r

y
)TR21y0obs (22a)

and thus

x0a 5P
x,r
(P#

y , e.r
y
)TR21y0obs , (22b)

where

(P#
y)

T 5 [(P
y
)TR21(P

y
)1 (N2 1)I]21(P

y
)T (22c)

and

P
y
5H(x

b
1P

x
)2H(x

b
) , (22d)

which is essentially the same as the LETKF method

(Hunt et al. 2007); they differ only in their localization

schemes. Here, H and R are the observation operator

and observation error covariance, respectively, for the

3D case.

f. NLS5-En4DVar: An iterative improvement scheme

Following Courtier et al. (1994), a linear approxima-

tion to Eq. (1a) is proposed, which is valid in the vicinity

of xb, as follows:

J(dx
0
)5

1

2
f(dx

0
)TB21(dx

0
)1�

S

k50

[Y
k
dx

0
1L

k
(x

b
)2y

obs,k
]T

3 R21
k [Y

k
dx

0
1L

k
(x

b
)2y

obs,k
]g

Y
k
5H0

kM
0
k

dxa0 5Argmin J(dx
0
)

x
a
5 x

b
1 dxa0

.(23)

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:
Equation (23) is widely taken as the inner loop, in which

the reduced resolution tangent linear and adjoint

models with some simplified physical processes are

the common choice of many operational centers. To

account for some nonlinearities, an outer loop is

added and the concept of guess field xia is introduced as

follows:

J
i
(dxi21

0 )5
1

2
½(dxi21

0 1 x0,i21
a )TB21(dxi21

0 1 x0,i21
a )

1 �
S

k50

(Y
k
dxi21

0 2 y0,i21
obs,k)

TR21
k (Y

k
dxi21

0 2 y0,i21
obs,k)�

x0,i21
a 5 xi21

a 2 x
b

y0,i21
obs,k 5 y

obs,k
2L

k
(xi21

a )

Y
k
5H0

kM
0
k

dxi21,*
0 5ArgminJ

i
(dxi21

0 )

xia 5 xi21
a 1 dxi21,*

0

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

(24)

for i5 1, . . . , Imax, where x0a 5 xb. Thus, we propose an

iterative improvement method, called NLS5-En4DVar,

of the NLSi-En4DVar (i5 0, 1, 2, 3) family. The NLS5
-En4DVar approach also assumes that dxi21

0 is ex-

pressed by the linear combinations of the IPs

Pi21
x 5 (x0,i21

1 , . . . , x0,i21
N ) as follows:

dxi21
0 5Pi21

x dbi21 . (25)

Substituting Eq. (25), x0,i21
a 5Pi21

x bi21, and the ensemble

background covariance, B5 [(Pi21
x )(Pi21

x )T]/(N2 1),

into Eq. (24) and expressing the cost function in terms of

the new control variable dbi21 yields

J
i
(dbi21)5

1

2
(N2 1)(dbi21 1bi21)T(dbi21 1bi21)

1 �
S

k50

(Y
k
Pi21
x dbi21 2 y0,i21

obs,k)
T

3 R21
k (Y

k
Pi21
x dbi21 2 y0,i21

obs,k)

#
, (26)

where bi21 5 [(Pi21
x )TPi21

x ]21(Pi21
x )Tx0,i21

a . Following the

idea of the NLS4-En4DVar approach, we can obtain

dbi21 5

"
(N2 1)I1 �

S

k50

(Pi21
y,k )

TR21
k (Pi21

y,k )

#21"
�
S

k50

(Pi21
y,k )

TR21
k y0,i21

obs,k2(N2 1)bi21

#

5

"
(N2 1)I1 �

S

k50

(Pi21
y,k )

TR21
k (Pi21

y,k )

#21
3

(
�
S

k50

(Pi21
y,k )

TR21
k y0,i21

obs,k2(N2 1)[(Pi21
x )TPi21

x ]21(Pi
x)

Tx0,i21
a

)
, (27)
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where Pi21
y,k 5 (y0,i21

k,1 , . . . , y0,i21
k,N )5YkP

i21
x . After the lo-

calization process, we can further obtain

dbi21
r 5 �

S

k50

(P#,i21
y,k , e. r

y
)TR21

k y0,i21
obs,k

1 (P#,i21
x , e. r

x
)Tx0,i21

a , (28a)

dxi21,*
0 5Pi21

x,r db
i21
r , (28b)

and

xia 5 xi21
a 1 dxi21,*

0 , (28c)

where

(P#,i21
y,k )T 5

"
(N2 1)I1 �

S

k50

(Pi21
y,k )

TR21
k (Pi21

y,k )

#21
(Pi21

y,k )
T

(29a)

and

(P#,i21
x )T 52(N2 1)

"
(N2 1)I1�

S

k50

(Pi21
y,k )

TR21
k (Pi21

y,k )

#21

3[(Pi21
x )TPi21

x ]21(Pi21
x )T .

(29b)

Obviously, we can fix Pi21
x 5Px 5 (x01, x

0
2, . . . , x

0
N) dur-

ing the outer loop. In this case, we have to update their

corresponding OPs Pi21
y,k 5 (y0,i21

k,1 , . . . , y0,i21
k,N ) through

y0,i21
k,j 5Lk(x

i21
a 1 x0j)2Lk(x

i21
a ), which should run the

forecast model N times repeatedly for each outer loop

and thus lead to expensive computational costs. To ad-

dress this, we can let

Pi21
x 5 (x0,i21

1 , . . . , x0,i21
N ) and (30a)

x0,i21
j 5 x0j 1 x

b
2 xi21

a , (30b)

and then

y0,i21
k,j 5L

k
(xi21

a 1 x0,i21
j )2L

k
(xi21

a )5L
k
(x

b
1 x0j)2L

k
(xi21

a ) ,

(30c)

which means that one only needs to produce the

ensemble model integrations [i.e., Lk(xb 1 x0j),
j5 1, . . . , N] once, which could be repeatedly utilized

during the outer loop in the NLS5-En4DVar. The ad-

vantage of this strategy is that we can approximate

H0
kM

0
kP

i21
x at xi21

a without running the forecast model

N times repeatedly.

We note that the aboveNLS5-En4DVarmethod takes

the NLS4-En4DVar analysis solution as the starting

value x1a and improves it through an iterative procedure.

Each iteration of NLS5-En4DVar consists of three steps.

First, the background field xi21
a is updated; that in turn

calls for updates of Pi21
x and Pi21

y,k in the second step.

Finally, an incremental dbi21
r is computed by calling a

quasi-NLS4-En4DVar scheme. Repeating this process

then results in NLS5-En4DVar. Compared to the iterative

methods NLSi-En4DVar (i5 0, . . . , 3), NLS5-En4DVar

has one important advantage: it does not involve the

tangent model, nor does it use the (expensive) adjoint

model while it can update Pi21
y,k with xi21

a during the it-

eration process. As a result, it should be cheaper to

implement this approach while achieving almost the

same accuracy as NLS1-En4DVar, as demonstrated by

the numerical tests performed in section 3a.

To summarize, NLS0-En4DVar provides an alterna-

tive approach (i.e., a Gauss–Newton iterative method)

to the En4DVar formulation Eq. (8) without dealing

with the adjoint models. This new approach is based on

the idea of first transforming the original En4DVar

formulation into a nonlinear least squares problem,

which then is solved by a Gauss–Newton iterative al-

gorithm. To reduce the computation complexity of the

algorithm, we propose a series of simplified methods,

namely, NLSi-En4DVar (i5 0, . . . , 4), with decreasing

computational complexity at the expense of reduced

accuracy. It is interesting to note that these NLSi-

En4DVar (i5 0, . . . , 4) methods unify the representa-

tion of En4DVar, 4DEnVar, and LETKF into a single

formulation and clearly reveal the relationship between

these methods. They also provide a better un-

derstanding of these methods from a different perspec-

tive and more flexible choices for data assimilation for

different situations. Furthermore, we also propose an

improved iterative method (i.e., NLS5-En4DVar) based

on the comprehensive analysis on the above NLSi-

En4DVar family of methods. Particularly, an efficient

localization scheme is introduced into the NLSi-En4DVar

(i5 1, . . . , 5) methods to reduce the expensive computa-

tional costs resulting from the CG iterations required

for solving Eq. (15) in the original NLS1-En4DVar

formulations.

3. Preliminary numerical evaluations

We design two groups of numerical experiments to

evaluate the proposed NLSi-En4DVar methods. The

first group of experiments is based on the Lorenz-96

model, and they are designed to better understand

their inherent relationship. The second group of ex-

periments is based on the Advanced Research WRF

(ARW) Model, and they are used to further explore

the potential applicability of three members of the
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NLSi-En4DVar family of methods to real atmosphere

and/or ocean models.

a. Preliminary evaluations using the Lorenz-96
model

In this section, we use the Lorenz-96 model (Lorenz

1996) as the model platform to evaluate all the proposed

methods (i.e., NLSi-En4DVar, i 5 0, 1, 2, 3, 4, 5 and

En4DVar). This model has been widely used to study

various issues associated with data assimilation. For

example, it has been used for the comparative study of

4DVar, 4DEnKF (Fertig et al. 2007), and EnKF (Kalnay

et al. 2007), as well as for evaluations of EnKF without

perturbed observations (Whitaker and Hamill 2002),

4DEnKF (Hunt et al. 2004), and 4DEnVar (Tian et al.

2011). Therefore, we choose the Lorenz-96 model to

investigate the advantages and disadvantages of the

seven data assimilation methods discussed in the pre-

vious section.

The Lorenz-96 model is governed by the following

system of nonlinear equations:

dx
i

dt
52x

i22
x
i21

1 x
i21

x
i11

2 x
i
1F, i5 1, . . . ,n , (31)

with periodic boundary conditions. The model behaves

quite differently with different values of F and produces

chaotic systems with integer values of F larger than

three. In this configuration, we take n5 40 and F5 8.

For computational stability, a time step of 0.05 units (or

6 h in equivalent; Lorenz 1996) is adopted and a fourth-

order Runge–Kutta scheme is used for temporal in-

tegration in this study. In all cases, the true states and

observations were generated by the model with F5 8.

These observations were then assimilated into models

with F5 8 and 9. The default number of observations is

m5 20 (equally spaced at every observation time).

Observations were taken every two time steps (or 12 h),

which were generated by adding random error pertur-

bations with the standard deviation error of 0.1 to the

time series of the true state. All experiments were car-

ried out over 5 days. The default parameter setups are

the ensemble size N5 30, r5 10, and the covariance

localization Schür radius r0 5 dh,0(dy0)5 8 (only one di-

rection in the Lorenz-96 model). The length of the as-

similation window is four steps and the ensemble is

regenerated by the LETKF format (Hunt et al. 2004) for

each cycle. The background initial field is generated by

integrating the model 100 000 steps from an arbitrary

nonzero field and the true initial field is subsequently

obtained by integrating the 20 steps from the back-

ground initial field. Therefore, this background state is

significantly different from the ‘‘true’’ state (not shown).

The initial sample is generated by running the Lorenz

model from 90 steps (i.e., sampling once every 3

time steps).

The performance of the NLS0-En4DVar approach is

first examined in comparison to the original En4DVar

method. In this study, we employ an L-BFGS method

(Liu and Nocedal 1989) for the minimization in the

En4DVar approach through Eqs. (8) and (9). Corre-

spondingly, the Gauss–Newton algorithm with the

conjugate gradient linear solver is used to solve NLS0-

En4DVar. We compare the performance of NLS0-

En4DVar with the original En4DVar method under

the perfect-model (Fig. 1a: F5 8 for all the truth,

forecast, and assimilation runs) and the imperfect-

model (Fig. 1b: F5 8 for the truth run and F5 9 for

the forecast and assimilation runs) assumptions. The

results show that both methods perform equally satis-

factorily in terms of overall low root-mean-square

FIG. 1. Time series of the RMSEs for the four data assimilation

techniques (En4DVar, NLS0-En4DVar, En4DVar with Imax 5 4,

and NLS0-En4DVar with Imax 5 4) using default parameter setups

with the Lorenz-96 model (a) without model error (F5 8) and

(b) with model error (F5 9).
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(RMS) errors. As noted above, NLS0-En4DVar is

just a reformulation of the En4DVar method, so they

are mathematically equivalent. The difference be-

tween the two assimilationmethods is theminimization

algorithms (the L-BFGS versus the Gauss–Newton

algorithm) used inside both methods. Numerically,

these two methods should differ on the assimilation

performance because the adjoint models must be in-

volved in En4DVar but not in NLS0-En4DVar.

To further examine the differences between the two

iterative algorithms (L-BFGS and Gauss–Newton), we

focus on their performance in the first assimilation

window, and their convergence speeds in particular are

examined since their RMS errors are almost identical.

Figure 2 shows that the cost function values are de-

creasing in the iteration steps (only the first 20 steps) for

the two methods under both the perfect and imperfect

model assumptions. In the perfect model case, the

Gauss–Newton algorithm reaches its minimum

(517.156) after 5 iterations, while the L-BFGS used in

the original En4DVar method needs 82 iterations to

reach its minimum value (which is also 517.156). Simi-

larly, for the imperfect model, their minimum values

(both are 556.94) are reached in 8 iterations by the

Gauss–Newton algorithm for NLS0-En4DVar and 83

iterations by the L-BFGS for the En4DVar method. To

further check the influence of the iterations on the as-

similation results, we also evaluate the performance of

En4DVar and NLS0-En4DVar with Imax 5 4 in Fig. 1.

Obviously, the performance of En4DVar depends on

the maximum iteration number and performs less sat-

isfactory for smaller Imax. As expected, the extra cost of

integrating the adjoint models for 4DVar (due to the

iterative algorithm based on the L-BFGS) seriously

limits its applications for complicated real-world

models. It should also be noted that NLS0-En4DVar

requires series of linear operations in M0,i21
k , which cer-

tainly adds some computational costs, although the

number of iterations is significantly smaller than that of

the original En4DVar method.

Second, to investigate how the proposed simplifica-

tions affect the final analysis results, we also designed

another group of experiments to test the NLSi-En4DVar

(i 5 0, 1, 2, 3, 5) methods. As mentioned above, we

observed that their assimilation accuracy is reduced

gradually from NLS0-En4DVar to NLS3-En4DVar, but

this transition features decreasing computational com-

plexity, in both the perfect and imperfect-model sce-

narios (Fig. 3). By comparison, NLSi-En4DVar (i5 1, 2, 3)

performs only slightly to moderately worse than

NLS0-En4DVar does. This group of experiments illus-

trates that the tangent linear models (with the updated

xi21
a during the iteration process) are vital to achieving

higher assimilation accuracy. Remarkably, NLS5-

En4DVar performs almost as well as NLS1-En4DVar

and substantially better than NLS2-En4DVar in the

perfect-model scenario. Furthermore, it shows strong

competition in the imperfect-model scenario that its

performance is on a par with that of NLS0-En4DVar

[performs better than the NLSi-En4DVar (i 5 1, 2, 3)

methods]. These results demonstrate that to use (or

approximate) the tangent models with the updated xia
during the iteration process contributes noticeably to

the accuracy of the final assimilation result.

Finally, to examine the sensitivity of the 4DEnVar

assimilation performance to the iteration strategy, we

also compared the performance of NLS3-En4DVar (a

typical 4DEnVar method) using different maximum it-

eration numbers (Imax 5 1, 3, 5). We note that NLS3-

En4DVar with Imax 5 1 (i.e., no iteration is performed) is

just the NLS4-En4DVar method. As expected, the per-

formance of NLS3-En4DVar becomes better and better

FIG. 2. Shown are the variations of the cost function values with

increasing iteration steps for the two data assimilation techniques

(En4DVar and NLS0-En4DVar) using default parameter setups

with the Lorenz-96 model (a) without model error (F5 8) and

(b) with model error (F5 9).
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as the iteration number increases (Fig. 4). Noticeably,

NLS4-En4DVar performs worse than the other methods.

These results imply that the nonlinearity has a large impact

on data assimilation and should not be ignored. The so-

called no-iteration approach may not be a true advantage

of an assimilation method because the small savings in

computational cost are obtained at the expense of much

reduced accuracy.

b. Preliminary evaluations using the Advanced
Research WRF (ARW) Model

The new version ARW Model (ARW3.7) is used for

the experiments of this section. All experiments are

done using the mesh of 1003 120 (latitude3 longitude)

grid points with grid spacing of 30 km. The domain,

which covers the region of China from 15.58–43.58N to

88.58–131.58E, with 30 layers from h5 0 to h5 1 in the

vertical direction, is used. The experiment design used

here is almost same as that in Tian and Feng (2015). The

NCEP Final (FNL) Operational Model Global Tropo-

spheric Analyses (http://rda.ucar.edu/datasets/ds083.2/)

are used as the first-guess field and boundary conditions

in the experiments. The ‘‘true’’ and ‘‘background’’ (re-

ferred to as Ctrl) simulated fields and the synthetic ob-

servations are produced in the same way. The true and

background fields are produced from 12- and 24-h

forecasts initialized by the NCEP/FNL data at 12 and

24h prior to the analysis time, respectively. We choose a

6-h assimilation window with accumulated rainfall and

traditional temperature (only on the h5 0:563 layer)

observation data available at 0, 3, and 6h (at the ob-

servational stations; ZT) after the analysis time; the

ensemble samples are also generated by the 4D moving

sampling strategy (Tian and Feng 2015) and the en-

semble size is 146. The horizontal localization radius

used in this section is 750km and r5 42 (ZT). The three

NLSi-En4DVar (i5 3, 4, 5) methods are tested to

FIG. 3. Time series of the RMSEs for the five data assimilation

techniques (NLS0-En4DVar, NLS1-En4DVar, NLS2-En4DVar,

NLS3-En4DVar, and NLS5-En4DVar) using default parameter

setups with the Lorenz-96 model (a) without model error (F5 8)

and (b) with model error (F5 9).

FIG. 4. Time series of the RMSEs for NLS3-En4DVar with

different maximum iteration numbers (Imax 5 1, 3, 5) with the

Lorenz-96 model (a) without model error (F5 8) and (b) with

model error (F5 9).

88 MONTHLY WEATHER REV IEW VOLUME 146

http://rda.ucar.edu/datasets/ds083.2/


examine their potential applicability to complicated real-

world nonlinear weather and climate models. It should

be noted here that the other three NLSi-En4DVar

(i5 0, 1, 2) methods are too difficult/costly to implement

with theWRFModel.We set Imax 5 3 in these experiments

to test the NLS3-En4DVar and NLS5-En4DVar methods.

To evaluate the overall performance of the NLSi-

En4DVar methods (i5 3, 4, 5), we first compare the

root-mean-square errors (RMSEs) of 30-h forecasts of

accumulated rainfall (1–30 h after the analysis time)

with the ICs from the NLSi (i5 3, 4, 5) and Ctrl simu-

lations, respectively. Figure 5 shows the RMSEs of 30-h

forecasts of accumulated rainfall with the ICs from the

assimilations; all three NLSi-En4DVar methods pro-

duce smaller values than those from Ctrl, which in-

dicates that the three NLSi-En4DVar methods can

steadily improve the rainfall forecast over 30 h. More-

over, Fig. 5 also shows that both NLS3-En4DVar and

NLS5-En4DVar outperform NLS4-En4DVar (i.e.,

POD-4DVar) moderately, which illustrates the importance

of the iterative strategy adopted in the two NLSi-En4DVar

methods (i5 3, 5). In particular, the improved iterative

method NLS5-En4DVar performs slightly better than

NLS3-En4DVar in terms of its lower RMSEs of 30-h

forecasts of accumulated rainfall.

Furthermore, to investigate the performance of the

twoNLSi-En4DVar (i5 3, 5) methods, we also compare

the vertical profiles of RMSEs of some basic model

variables from NLSi (i5 3, 5) and Ctrl at the beginning

and at the end of the assimilation window, which are

calculated at all horizontal model grid points of each

layer. The same conclusion can be drawn that NLS5-

En4DVar produces more accurate atmospheric states

than NLS3-En4DVar does. As seen in Figs. 6 and 7,

NLS5-En4DVar yields a smaller error than NLS3-

En4DVar does on most model layers. This further in-

dicates that the improved iterative strategy adopted in

NLS5-En4DVar contributes in an impactful way to its

superior performance.

Additionally, to examine the impacts of the modified

localization implementation in Eq. (17) to the NLSi-

En4DVar methods, another version of NLS3-En4DVar

using the CG iterations [referred to as NLS3-En4DVar-

CG; Zhang et al. (2016)] is deliberately involved in the

above comparisons. Generally, NLS3-En4DVar per-

forms almost completely the same as NLS3-En4DVar-

CG does in terms of the RMSEs (not shown), which

illustrates that computational efficiency without the use

of the CG iterations in NLS3-En4DVar is not achieved

at the expense of the assimilation accuracy. All of the

above numerical experiments are conducted serially in a

DELL M620 server with two CPUs and fourth-

generation broadband cellular network (4G) memories.

The CPU times, which are required to accomplish

their pure assimilation experiments (not including the

forecast model run time), for the NLSi-En4DVar

(i5 3, 4, 5) and NLS3-En4DVar-CG methods, are

compared in Table 2. The results show that the im-

proved iterative strategy adopted in NLS5-En4DVar

adds almost no (i.e., negligible) computational cost,

which is also expected because the NLS5-En4DVar re-

formulation does not add any additional forecast model

runs. Furthermore, the comparison between the two

versions of NLS3-En4DVar illustrates that the in-

troduction of the modified localization scheme without

the CG iterations indeed results in a significant speed up.

In addition, the CPU time for running the forecast

model (i.e., the WRFmodel) once is about 10.3min. We

point out that the CPU times are always case and ma-

chine dependent.

4. Summary and conclusions

The only difference between En4DVar and the tra-

ditional 4DVar is that En4DVar uses the ensemble

background covariance matrix Be provided by the par-

allel EnKF implementation to replace the usual static,

flow-independent covariance matrix B in the traditional

4DVar scheme. The inclusion of the matrix Be enables

(or facilitates) En4DVar to benefit from the flow-

dependent strength of EnKF. However, the adjoint

model is still required inside theminimization procedure

in En4DVar. An alternative strategy is exploited in this

study with a focus on circumventing the obstacle of the

adjoint models. To accomplish this goal, we first trans-

form the standard En4DVar into a nonlinear least

squares problem. Subsequently, a Gauss–Newton iter-

ative algorithm is proposed to iteratively approximate

the optimal nonlinear 4DVar solution (without invoking

the adjoint models), which defines NLS0-En4DVar

with no dependency on the adjoint models. To re-

duce the computational and implementation costs, the

FIG. 5. RMSEs of 30-h forecasts of accumulated rainfall (from 1 to

30 h) with the ICs from the Ctrl, NLS3, NLS4, and NLS5 methods.

JANUARY 2018 T I AN ET AL. 89



Gauss–Newton iterative algorithm is further simplified

with different levels of accuracy and computational

complexity, which provides more flexible choices for

data assimilation during different situations.

The advantages and disadvantages of the proposed

NLSi-En4DVar methods and their inherent relationship

are demonstrated by several groups of numerical eval-

uation experiments with the Lorenz-96 and Advanced

Research version of WRF (ARW) models, respectively.

Our main conclusions are summarized as follows:

d The proposed NLSi-En4DVar family of methods

provides a unified formulation of En4DVar, 4DEnVar,

and LETKF for better understanding their relationship

and a new perspective for future research on data

assimilation.
d NLS0-En4DVar provides an alternative approach to

the En4DVar approach by utilizing explicitly an

iterative algorithm rather than resorting to any existing

optimization algorithm. Unlike the usual En4DVar

method, which involves performing several evaluations

of the cost function and its gradient with the L-BFGS

algorithm, the adjoint models are tactically avoided in

the proposed Gauss–Newton algorithm. Moreover, the

added computational cost could be compensated for by

its ease of parallel computing.
d While looking forward in the future, NLS1-En4DVar

appears to be a very promising and competitive option

FIG. 6. Vertical profiles of RMSEs of (a) zonal wind (m s21), (b) meridional wind (m s21),

(c) temperature (8C), and (d) water vapor mixing ratio (g kg21) of the NLS3 and NLS5 methods

at the start of the assimilation window
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because of its moderate difficulty in computer imple-

mentation (it only requires the tangent linear models

as NLS0-En4DVar does) and its significantly reduced

computational costs, which all are achieved with

only a small reduction in the convergence speed

compared to the original NLS0-En4DVar.
d Compared with NLS1-En4DVar, NLS5-En4DVar is

quite advantageous and has great potential because of

its ease of implementation and the absence of any

need to invoke the tangent and adjoint models, as well

as its superior performance.
d The iteration strategy adopted in the proposed NLSi-

En4DVar family of methods is expected to significantly

improve the quality of the data assimilation results

because of its ability to handle the strong nonlinearity

of the models, which is common in data assimilation.

FIG. 7. As in Fig. 6, but at the end of the assimilation window.

TABLE 2. The CPU time (s) needed for NLSi-En4DVar (i5 3, 4, 5) and NLS3-En4DVar-CG to accomplish their pure WRF assimilation

experiments for each iteration.

Method NLS3-En4DVar NLS3-En4DVar-CG NLS4-En4DVar NLS5-En4DVar

CPU time (s) 258.72 222 102.73 86.24 258.82
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